
BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1096

IMPLEMENTATION OF AHB PROTOCOL USING FPGA

Mrs.Bhavana L. Mahajan
1
, Dr.A.S.Hiwale

2
, Mrs.Kshitija S.Patil

3
, Prof.G.D.Salunke

4

1. Student (ME),E&TC,GSMCOE,Pune,Maharastra,India,mlbhavana@gmail.com

2. Principal,E&TC,GSMCOE,Pune,Maharastra,Indi,ashiwale@gmail.com

3. .Student (ME),E&TC,GSMCOE,Pune,Maharastra,India,kspatil87@gmail.com

4. Asst. Prof,E&TC,GSMCOE,Pune,Maharastra,Indi,geetasalunke@g.mail.com.

Abstract

Resolution is a big issue in SOC (System On Chip) while dealing with number of masters trying to sense a single data bus. The

effectiveness of a system to resolve this priority resides in its ability to logical assignment of the chance to transmit data width of the

data, response to the interrupts, etc. The purpose of this seminar report is to propose the scheme to implement such a system using the

specification of AMBA bus protocol. The scheme involves the typical AMBA features of ‘single clock edge transition’, ‘split

transaction’, ‘several bus masters’, ‘burst transfer’. The bus arbiter ensures that only one bus master at a time is allowed to initiate

data transfers. Even though the arbitration protocol is fixed, any arbitration algorithm, such as highest priority or fair access can be

implemented depending on the application requirements. The design architecture is written using VHDL (Very High Speed Integrated

Circuits Hardware Description Language) code using Xilinx ISE Tools. This paper aims at covering the basics of buses, AMBA bus

basics, overview of AHB Arbiter, various arbitration algorithms, their comparison, and finalize the best suitable algorithm for the

above implementation.

Index Terms: Amba bus, AHB, ASB, AHB, VHDL, round robin

---***--

1: INTRODUCTION

1.1Buses

Buses are shared communication media used by devices to

“talk to” each other both on-chip and off-chip. The

communication actions which take place can carry both data

and control structures.

The BUS Specification

AHB (AMBA High-performance Bus) is a bus protocol

introduced in AMBA specification version 2 published by

ARM limited Company. In addition to previous release, it has

the following features:

 Single edge clock protocol

 Split transaction

 Several BUS Master

 Burst transfers

 Pipelined operations

 Single cycle bus master handover

 Non-tristate implementation

 Large bus-widths (64/128 bit)

 The AMBA specification describes an on-chip

communications standard for designing High-

performance 16 and 32-bit microcontrollers, signal

processors and complex peripheral devices.

 AMBA has been proven in and is being designed

into:

 • PDA microcontrollers, with a high number of

integrated peripherals but also with very low power

consumption

 Multi-media microcontrollers with floating-point co-

processors, on-chip video controller and high

memory bandwidth

Fig.1 Bus basics: order and broadcast properties

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1097

• Complex peripheral ASICs for consumer products

• Digital mobile communication devices integrating control

and signal-processing functions

ARM‟s policy is to encourage the use of AMBA wherever

possible. ARM partners have access to HDL models,

development boards and other tools that support AMBA.

AMBA Specification

The AMBA specification defines:

• A high-speed, high-bandwidth bus, the Advanced System

Bus (ASB)

• A simple, low-power peripheral bus, the Advanced

Peripheral Bus (ASP)

Fig.2 AMBA Bus

• Access for an external tester to permit modular testing and

fast test of cache RAM

• Essential housekeeping operations (reset/power-up,

initialization and power-down)

Fig.3 A typical AMBA-based microcontroller

 A typical AMBA-based microcontroller shows:

1.1.1 The Advanced System Bus (ASB)

The ASB is designed for high-performance, high-bandwidth

usage:

• Non-multiplexed (i.e. separate) address and data buses

• Support for pipelined operation (including arbitration)

• Support for multiple bus masters, with low silicon overhead

• Support for multiple slave devices, including a bridge to the

peripheral bus (APB)

• Centralized decoder and arbiter

Absolute transfer rates depend on many design factors, but, for

comparison purposes,if a 32-bit data path and a 100MHz clock

are assumed, 200Mbytes/sec rate can be achieved. These

figures are not limited by the specification but are simply

provided for clarification. Multiple bus masters are supported

through the use of bus request, bus grant and bus lock signals.

Use of these signals is optional; if you have a single bus

master, you do not have the penalty of implementing these bus

control lines.The high-performance bus which is the main

system „backbone‟. This bus is also able to sustain the data

rates required by the external us interface. The CPU and other

bus masters (such as a DMA controller), and high-speed local

memory are normally connected to this bus. (The ASB is

connected by a bridge to the simpler APB)

1.1.2 The Advanced Peripheral Bus (APB)

The APB is designed to be a secondary bus to ASB, connected

by a bridge (which limits the ASB loading). APB is a much

simpler bus and has a low power focus:

• Data access is controlled by select and strobe only (i.e. no

clock, and thereby reducing power)

• Almost zero-power consumption when bus is not in use

• Simple unpiplined interface, typical of that required by many

simple peripheral microcells.

Data transfer rates are dependent on the speed of the

peripherals. A single read or write cycle takes 5 clocks, so

assuming a 32-bit data path and 100MHz clock, the data rate

is 80Mbytes/sec. These figures are not limited by the

specification but are simply provided for clarification. The

data bus of the APB can be more readily optimized to suit the

peripherals connected. Many peripherals have narrow data

path needs, and one mechanism may be to connect the 32-bit

peripherals next to the bridge and 8-bit peripherals furthest

away, reducing the die area needed for the bus. Although the

clocking strategy is not specified in AMBA, the partitioning

provided by the bridge and APB does suggest a good starting

point for minimizing power consumption. Many peripherals

(timers, baud rate generators, pwm units) require a divided-

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1098

down system clock, and locating a single programmable

divider adjacent to the bridge is convenient and power-

efficient.

The simple, low-speed, low-power peripheral bus. This is

often, but not always, a narrower bus and is designed to be

simple (i.e.unpipelined) for connecting many common

peripherals such as timers, parallel I/O ports, UARTs, etc. (By

placing these infrequently accessed peripherals on the APB,

and partitioning them away from the ASB, loading on the

ASB is reduced and allows maximum performance on the

ASB to be more readily achieved.)

1.1.3 Advanced High-performance Bus (AHB)

AHB is a bus protocol introduced in Advanced

Microcontroller Bus Architecture version 2 published by

ARM Ltd company. In addition to previous release, it has the

following features:

 single edge clock protocol

 split transactions

 several bus masters

 burst transfers

 pipelined operations

 single-cycle bus master handover

 non-tristate implementation

 large bus-widths (64/128 bit).

 2nd-generation AMBA system bus

 Synchronous, no multiplexed bus

 Separate read, data buses

 Multimaster, arbitrated bus

 32-, 64-, 128-, 256-bit data paths

 32-bit address bus

 Pipelined, split transactions

 Supports bursts (4-, 8-, 16-beat)

 Non-tristate, multiplexer implementation

The AHB takes on many characteristics of a standard plug-in

bus. It's a multimaster with arbitration, putting the address on

the bus, followed by the data. It also supports wait-state

insertion and has a data-valid signal (HREADY). This bus

differs in that it has separate read (HRDATA) and write

(HWDATA) buses. These bus connections are multiplexed,

rather than making use of a tristate multiple connections.

AHB supports bursts, with 4-, 8-, and 16-beat bursts, as well

as undefined-length bursts and single transfers. Bursts can be

address wrapped, i.e., staying within a fixed address range.

Bursts can't cross a 1-kB address boundary, though. Slaves

can insert wait states to adjust its response (up to 16).

All bus operations are initiated by bus masters, which also can

serve as a slave. The master-generated address is decoded by a

central address decoder that provides a select signal to the

addressed bus slave unit. The bus master can "lock" the bus,

reserving it with the central arbiter for a series of locked

transfers.

The slave unit has the option to terminate a transaction as an

error, signal the master to retry, or split the transaction for

later completion. Split transactions enable the slave to defer

the operation until it's able to accomplish it, thereby releasing

the bus for other accesses. The slave signals a split transaction

and saves the master number (HMASTER\[]). When ready to

complete the transaction, the slave signals the arbiter with the

master number. When the arbiter grants bus access to the

master, it restarts the transaction. No master can have more

than 1 pending split transaction.

AHB supports 32, 64, and 128-bit data-bus implementations

with a fixed 32-bit address bus. It is a synchronous bus that

supports bursts and pipelining of accesses to improve

throughput. The AHB system bus and APB peripheral bus are

linked through a 'bridge' that acts as the master to the

peripheral bus slave devices. The peripheral bus (APB) is a

simpler, lower-speed, low-power bus for slower devices. It is

typically used for connecting peripherals such as UARTS,

rather than for SRAM, Flash etc. as these will be on the AHB,

requiring the additional bandwidth. The AHB and APB can

run at different clock rates. AHB supports multiple masters

(either through a central arbiter, or through slave level arbiters

in the case of a multi-layer AHB-lite system). The arbiter has

the task of determining which master gets to do an access.

Every transfer has an address/control phase and a separate data

phase. They're both pipelined (able to start the next transfer's

arbitration and address phase while finishing the current

transfer).The address transfer is always followed by the data

phase. A slave (memory or peripheral device which accepts a

read or write request from a master) can prolong the transfer

(add wait states) using the HREADY signal. Separate uni-

directional buses for read (HRDATA) and write (HWDATA)

are used.

Burst Support

AHB supports bursts, which can either be of undefined-length

or fixed length (4, 8 or 16 beats). There is also, of course, the

possibility to do a single transfer (one read or write). Bursts

may be performed to a fixed address (eg for FIFO access),

increment addresses (in steps of a single increment equal to

the size of the access) or wrap (where a critical word within a

cache line is accessed first). Bursts may not cross a 1kB

boundary, to simplify slave handling of bursts and address

decoder design. The address from a master is decoded by a

http://en.wikipedia.org/wiki/ARM_Ltd

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1099

central address decoder that provides a select signal to one of

the slaves.

Support for bus locking, error signaling and split

accesses

The bus master can lock the bus, allowing it to perform a

sequence of atomic, locked transfers, with guarantees that

other masters cannot perform intervening accesses. This is

typically used to implement mutexes or semaphores between

masters. Slaves may respond to accesses by the master by

signaling OK, or by reporting an error. In the full AHB system

(but not AHB-lite), slaves may also give a retry response, or

the less commonly used split response. Split transactions let

the slave to delay completion of the access until ready but to

free the bus for other accesses by a different master. The slave

records the number of the master and signals the arbiter when

the split transfer can complete. When the arbiter re-grants the

bus to that master, it restarts the transaction. A master can

have only one pending split transaction.

AHB (Advanced High-performance Bus) X as a later

generation of AMBA bus is intended for high performance

high-clock synthesizable designs. It provides high-bandwidth

communication channel between embedded processor (ARM,

MIPS, AVR, DSP 320xx, 8051, etc.) and high performance

peripherals/ hardware accelerators (ASICs MPEG, color LCD,

etc), on-chip SRAM, on-chip external memory interface, and

APB bridge. AHB supports a multiple bus master‟s peration,

peripheral and a burst transfer, split transactions, wide data

bus configurations, and non tristate implementations.

Constituents of AHB are: AHB-master, slave-, arbiter-, and

Xdecoder.A simple transaction on the AHB consists of an

address phase and a subsequent data phase (without wait

states: only two bus-cycles). Access to the target device is

controlled through a MUX (non-tristate), thereby admitting

bus-access to one bus-master at a time. AHB-Lite is a subset

of AHB which is formally defined in the AMBA 3 standard.

This subset simplifies the design for a bus with a single

master.

1.2 AHB Components

AHB master is able to initiate read and write operations by

providing an address and control information. Only one bus

master is allowed to actively use the bus at any one time.(max.

16)

AHB slave responds to a read or write operation within a

given address-space range. The bus slave signals back to the

active master the success, failure or waiting of the data

transfer.

AHB arbiter ensures that only one bus master at a time is

allowed to initiate data transfers.

AHB decoder is used to decode the address of each transfer

and provide a select signal for the slave that is involved in the

transfer. A single centralized decoder is required in all AHB

implementations.

2: AMBA BUS ARBITRATION

Fig.4 AMBA bus arbitration

As with other AHB blocks, the arbiter may be very simple, or

quite complex. There may be up to 16 masters in the system.

Each one of them has a HBUSREQ bus request output which

goes to the arbiter and a corresponding HGRANT input which

the arbiter uses to indicate which master has been selected.

The AHB specification does not provide any specific guidance

on how the arbiter should decide which master gets the bus.

Schemes in common use are either priority based or cyclic. In

the priority case, one master is more important than the other

and if that master requests the bus, it will always be granted. A

low priority master is granted only if no higher priority

requests are present. In the cyclic case, each master is given a

turn at controlling the bus for a certain number of cycles, then

the next master gets it for some cycles and so on. It is possible

(but rare) for HADDR to be used by the arbiter - for example,

it may be designed to recognize that when a master is

accessing a particular slave, that access may have higher (or

lower) priority than normal.

http://en.wikipedia.org/wiki/MUX

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1100

It is often a good idea to design the arbiter such that it tries to

avoid changing ownership of the bus until the end of the burst,

as this maximizes available bandwidth. It is not possible to do

this in all cases, though. Obviously, if the slave returns

ERROR, RETRY or SPLIT, the master may choose to end the

burst. For an INCR burst of undefined length, the arbiter

cannot know when the burst will end and therefore cannot

predict when it is safe to handover to another master. Even for

a fixed length burst (where HBURST indicates the transfer

will have 4, 8 or 16 bits), while the arbiter can be designed to

recognize this case and count the number of transfers, it is not

possible to guarantee that the burst completes. The difficulty is

that HBURST is sampled on the first rising HCLK edge of the

burst, but this could co-incide with a cycle where the arbiter

has already to change HGRANT. So, the arbiter would change

control of the bus on the first cycle of the burst. To avoid this

problem would need HBURST to be factored combinatorially

into the HGRANT generation logic and the specification does

not allow that.

2.1 AHB Arbitration

 Features

 Round robin priority

 Scalable (Up to 16 masters)

 AMBA® 2.0 AHB interface

 HWDATA, HADDR and AHB control steering

 HBUSREQ and HGRANT arbitration
The Ahb Arbiter is used in AMBA® 2.0 AHB multi-master

systems to arbitrate the access to the AHB bus. The Ahb

Arbiter is basically a “traffic controller” which allows the

AHB bus to be shared between multiple bus masters such as

processors, DMA controllers, and peripheral core master

interfaces.

The Ahb Arbiter uses a round robin priority scheme with

Master0 having the default priority. This priority scheme

assures that each master equally has it‟s turn at acquiring and

completing an AHB bus transaction. Each inactive master is

locked out (HLOCK) while the active master has access to the

bus to prevent contention.

The Ahb Arbiter steers all the AHB HWDATA, HADDR,

HTRANS, HWRITE, HSIZE and HBURST signaling from

each master to the AHB system bus.

The Ahb Arbiter is delivered as a three master arbiter but can

easily be configured to allow up to sixteen AHB bus masters.

IP Package

The Ahb Arbiter package includes fully tested and verified

Verilog source. The Ahb Arbiter can also be delivered as an

FPGA Netlist for Xilinx, and Altera FPGAs.

Fig.5 AHB Arbitration

2.2 Limitation of AHB

There are literally a billion or more shipped devices containing

systems built around the AMBA AHB bus architecture. It is

relatively easy to understand and design around. It's relatively

synthesis & EDA tool friendly and is widely supported not

just by ARM and its licensees but also by many other

semiconductor IP and EDA companies. There are some things

that AHB doesn't do well, though. On this page, we'll briefly

discuss some of those things.

Lack of parallelism

One issue in higher-performance systems is that the original

protocol lacks support for parallelism. Although multi-layer

AHB allows multiple masters to talk to multiple slaves at the

same time, this is still done through a matrix of point-to-point

AHB-lite systems and there is consequently always in-order

completion to a particular master. It means that slave wait

states cannot be hidden to the master and there is no ability to

have multiple outstanding requests.

Arbitration overhead

High arbitration overhead can also be an issue with AHB

systems. If the full AHB bus request/grant protocol is used

(rather than multi-layer AHB-lite), then there is a two cycle

arbitration overhead. Although this can be hidden to some

extent by the use of bursts, it does mean that designers have to

think carefully about arbitration and the use of fixed priority

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1101

or round-robin schemes. AHB-lite removes this problem, but

there is still the issue of slave-level arbitration and consequent

variable latency when two masters access the same slave.

Re-usability of components

Another issue with the bus protocol itself is that any system

will have two components that are specific to that system.

Although masters and slaves can (in principle) be re-used from

one design to the next, the same is not generally true of

arbiters and decoders. These components are unique to a

particular system configuration. Further difficulties (not really

the fault of the AHB protocol itself) are that although masters

and slaves should conform fully to the specification, often

what happens is that designers will take short-cuts and omit

support for those features they don't plan to use. This can

cause problems when these slaves are re-used elsewhere (or

indeed in the original design if incorrect assumptions have

been made about the subset of the full specification used by

the master). Some examples seen in multiple customer designs

have been slaves which do not support the master issuing the

BUSY cycle type and memory slaves which have been unable

to cope with WRAP write bursts.

Timing closure

A common problem related to AHB system design is that of

timing closure. After completing RTL design and starting

netlist generation (or even as late as STA on post-layout

netlists), it may be discovered that a timing path is too long for

the bus clock cycle length. To resolve this typically means

inserting wait states into the slave design, or (even worse),

adding cycles to the arbiter or decoder. This needs RTL

changes and may dramatically decrease system performance.

3: TOPOLOGIES

In respect to topology on-chip communication architectures

can be classified as:

Shared bus: The system bus is the simplest example of a

shared communication architecture topology and is commonly

found in many commercial SoCs .Several masters and slaves

can be connected to a shared bus. A block, bus arbiter,

periodically examines accumulated requests from the multiple

master interfaces and grants access to a master using

arbitration mechanisms specified by the bus protocol.

Increased load on a global bus lines limits the bus bandwidth.

The advantages of shared-bus architecture include simple

topology, extensibility, low area cost, easy to build, efficient

to implement. The disadvantages of shared bus architecture

are larger load per data bus line, longer delay for data transfer,

larger energy consumption, and lower bandwidth. Fortunately,

the above disadvantages with the exception of the lower

bandwidth may be overcome by using a low-voltage swing

signaling technique.

Hierarchical bus: this architecture consists of several shared

busses interconnected by bridges to form a hierarchy. SoC

components are placed at the appropriate level in the hierarchy

according to the performance level they require. Low

performance SoC components are placed on lower

performance buses, which are bridged to the higher

performance buses so as not to burden the higher performance

SoC components. Commercial examples of such architectures

include the AMBA bus, Core Connect, etc. Transactions

across the bridge involve additional overhead, and during the

transfer both buses remain inaccessible to other SoC

components. Hierarchical buses offer large throughput

improvements over the shared busses due to: (1) decreased

load per bus; (2) the potential for transactions to proceed in

parallel on different buses; and multiple ward communications

can be preceded across the bridge in a pipelined manner

Ring: in numerous applications, ring based applications are

widely used, such as network processors, ATM switches. In a

ring, each node component (master/slave) communicates using

a ring interface, are usually implemented by a token pass

protocol.

 3.1 On-chip communication protocols

Communication protocols deal with different types of resource

management algorithms used for determining access right to

shared communication channels. From this point of view, in

the rest of this section, we will give a brief comment related to

the main feature of the existing communication protocols.

Static-priority: employs an arbitration technique. This

protocol is used in shared-bus communication architectures. A

centralized arbiter examines accumulated requests from each

master and grants access to the requesting master that is of the

highest priority. Transactions may be of non-preemptive or

preemptive type.AMBA, Core Connect... uses this protocol.

Time Division Multiple Access (TDMA): the arbitration

mechanism is based on a timing wheel with each slot statically

reserved for unique master. Special techniques are used to

alleviate the problem of wasted slots. Sonics uses this

protocol.

Lottery: a centralized lottery manager accumulates request for

ownership of shared communication resources from one more

masters, each of which has, statically or dynamically, assigned

a number of X lottery tickets.

Token passing: this protocol is used in ring based

architectures. A special data word, called token, circulates on

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1102

the ring. An interface that receives a token is allowed to

initiate a transaction. When the transaction completes, the

interface releases the token and sends it to the neighboring

interface.

Code Division Multiple Access (CDMA): this protocol has

been proposed for sharing on-chip communication channel. In

a sharing medium, it provides better resilience to

noise/interference and has an ability to support simultaneously

transfer of data streams. But this protocol requires

implementation of complex special direct sequence spread

spectrum coding schemes, and energy/battery inefficient

systems such as pseudorandom code generators, modulation

and demodulation circuits at the component bus interfaces,

and differential signaling.

4: ARBITRATION ALGORITHMS

In this section we briefly present and discuss the key features

of the arbitration

4.1. Round-Robin

A round-robin arbitration policy is a token passing scheme

wherein fairness among masters is guaranteed, and no

starvation can take place. In each cycle, one of the masters (in

round-robin order) has the highest priority for access to a

shared resource. If the token-holding master does not need the

bus in this cycle, the master with the next highest priority

who sends a request can be granted the resource. The

advantages of round-robin are twofold:

Unused time slots are immediately re-allocated to masters

which are ready to issue a request, regardless to their access

order. This reduces bus under-utilization in comparison with

a statically fixed slot allocation that might grant the bus to a

master which is not going to carry out any communication.

The worst-case waiting time for the bus access request of a

master is reliably predictable (being proportional to the

number of instantaneous requests minus one), even though

the actual waiting time is not. The uncertainty on the actual

bandwidth that can be granted to a master is the major

drawback of this scheme.

4.2. TDMA

A time division multiple access scheme is based on the fixed

allocation of a slot to each master, so that each of them is

guaranteed fixed and predictable bandwidth. Unfortunately,

high priority communications in a TDMA-based architecture

may incur significant latencies, because the performance

provided by this scheme strongly depends on the time-

alignment of communication requests and slot allocation and

therefore on the probability of dynamic variations of the

request patterns.

4.3. Slot Reservation

This arbitration policy can be seen as a limit case of TDMA,

in that only one master is periodically allocated a slot for the

contention-free access to the bus. For the inter-slot time, we

decided to manage the contention among the remaining

masters in a round-robin fashion. Although this is not a

conventional scheme for SoC communication architectures,

we propose this policy to combine the advantages of the

above mentioned schemes: one master is given priority in the

competition for bus access (in terms of guaranteed fixed

bandwidth), while all other masters can contend for the

shared communication resource avoiding the risk of

starvation.

4.4 Performance analysis of arbitration algorithms

Our objective was to stress the distinctive features of the

considered arbitration algorithms so to come up with

selection guidelines under different system workloads. To this

purpose, we identified three scenarios at the application level,

corresponding to three different communication patterns:

mutually dependent tasks, independent tasks, and pipelined

tasks.

4.4.1. Mutually Dependent Tasks

Let us assume a workload wherein one task is running on

each processor and that the correct execution of each task

involves synchronization with the other ones. In particular, let

us assume that all tasks have to synchronize with each other

at predefined points of the multiprocessor benchmark. In this

case, system performance optimization translates to avoiding

that some tasks reach the synchronization point much earlier

or much later than the others, because this would generate

idle waiting time for the unsynchronized task. An example

thereof is represented by the bootstrap stage of RTEMS on

the multiprocessor system. RTEMS selects one processor to

act as a master and all other ones are considered as slaves,

and they play a slightly different role in the booting

operation. Each processor (master and slaves) at first

independently initializes its private memory and hardware

devices, and then synchronization has to take place at the

shared memory. In fact, the master processor is in charge of

initializing the shared memory and of allocating the structures

for inter-processor communication. Then it starts polling the

status variables of the slave processors, until they are all set-

to ``ACTIVE,'' indicating that the slave processors have

defined their own data structures in the shared memory.

When this synchronization condition occurs, the master

processor sets those variables to ``FINISHED,'' notifying the

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1103

slaves that the initialization of the shared memory is over and

that each processor can independently complete its bootstrap

stage and load task

Fig.6 Execution time for bootstrap routine of RTEMS on the

microprocessor platform

4.4.2. Independent Tasks

The second scenario we investigated makes use of a

benchmark consisting of independent tasks, each running on a

specific processor. This system workload does not have any

synchronization point, nor does it involve inter-processor

communication. The above scenario has been implemented

on our simulation platform by executing the same matrix

multiplications on each processing element. Matrices are

initially stored in each processor's private memory, and the

traffic generated on the bus is associated with read operations

of matrix elements and to write transactions storing the

results back in the memory. Tasks execution and consequent

measurements are triggered once RTEMS has booted on all of

the processors. The performance metric we select for this

class of benchmarks is the average task execution time, given

the independent nature of the tasks themselves. Our

experiments have been carried out ranging the number of

processors from 2 to 10, analyzing the scaling properties of

the performance metric. Results relative to the tasks

execution times are reported in Figure 7, for the cases of 4

and 8 active processors. When four tasks are running, we

observe that round robin outperforms the other schemes. In

fact, if we randomly select one processor and periodically

grant it a slot for contention-free access to the bus, the

improvement of its execution time translates to a relevant

degradation of the performance for the other processors, and

the average task execution time of the system increases.

Though it is interesting to observe that a slot allocation of

9000 ns manages to balance the execution times of all

processors, so that on average all tasks complete within the

same time, similarly to what happens with round robin or

TDMA, and this is the most efficient approach for this

scenario. The relevant difference between the three arbitration

algorithms is in the average execution time that can be

obtained by each of them under the hypothesis of balanced

task execution times. The balancing effect for slot reservation

(achieved by properly tuning the slot duration) occurs at an

average execution time which lies between that provided by

round robin (the optimal one) and that provided by TDMA

(worst case).The same effect can be observed with 8

processors, even though the average values increase and the

gap between round robin and slot reservation decreases. One

might guess that the performance of TDMA is likely to

increase for smaller values of TDMA slot respect to those

reported in Figure 7, so to reduce bus idleness. The answer to

this question is reported in Figure 8, where the average

execution time

Fig.7 Execution time for a benchmark consisting of

independent task

Fig.8 Comparison between the performance of Round robin

and TDMA for small values of TDMA slot

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1104

4.4.3. Pipelined Tasks

A last scenario that is worth investigating is the one wherein

the impact of arbitration policies on the throughput of a

distributed signal processing application can be assessed.

While in the previous subsection we analyzed a system

workload wherein the traffic across the bus did not depend on

inter-processor communication at all, but was only related to

computation, now we want most of bus transactions to be

related to communication among processors. We want to

relate the performance of such a system to the way

communication related traffic is accommodated on the bus by

the different arbitration policies. To this purpose, we set up a

multiprocessor system wherein different tasks execute in a

pipelined fashion; with balanced computation workloads for

all of the processors (they execute matrix multiplications). On

top of the first processor, a task generates matrices that are

handed over to the second processor of the pipeline. At each

stage, the computation is carried out and the result

transmitted to the next stage. In other words, the pipeline

consists of couples of producer consumer tasks, and the

communication occurs, at a high level of abstraction, by

means of FIFO queues. The performance metric for this

system is the throughput, denned as the number of matrices

per second produced by the last processor of the pipeline (i.e.,

frame rate).Figure 10 shows the frame rate provided by the

arbitration policies, changing the value of the slot duration for

slot reservation and TDMA. While the performance of slot

reservation is highly sensitive to the slot time, the

performance of TDMA is almost independent of it.

Surprisingly enough, although both the workload and the

communication needs of the pipelined processors are

perfectly balanced, slot reservation performs better than

TDMA for a wide range of slot durations. This can be

explained by looking at the performance of round robin, that

is always much better than TDMA. Since our slot reservation

algorithm implements a round-robin arbitration policy during

inter-slot times, as long as the slot duration is much shorter

than the inter slot time, the performance of slot reservation is

dominated by the performance of round robin, while it

becomes much worse when larger slots are used. Therefore,

in Figure 10 only two experiments for slot reservation have

been carried out, because they are sufficient to clarify the

dependence of execution time as a function of the slot

duration. Since the frame rate provided by slot reservation is

always smaller than that of round robin, we can say that slot

reservation is counterproductive in this case. In fact, there is

no reason for guaranteeing a constant bandwidth to a single

stage of a pipeline if the same bandwidth cannot be

guaranteed to all stages. On the other hand, TDMA

guarantees a constant bandwidth to all processors in the pipe,

but its overall performance is lower than that of round robin.

This fact can be explained only by looking at the hardware

implementation of high-level interprocessor communication

primitives. In our system, the producer consumer paradigm is

implemented by means of the RTEMS message manager,

which makes use of a communication protocol among tasks

based on message queues. At the core of this protocol there is

the inter processor communication mechanism seen in Figure

4. The procedure is initiated by the producer, which creates a

global queue in its private memory, and writes messages to be

sent in it. When the consumer is ready to receive a message, a

notification is given to the producer by writing a request

message into the shared memory and by generating an

interrupt for the producer itself. The interrupt service routine

of the producer reads the message from shared memory and

assembles data to be sent in a message which is written back

to shared memory. Finally, a write transaction to the

consumer interrupt slave asserts an interrupt which allows the

consumer to pick up its message from shared memory. In this

context, TDMA poor performance can be explained in terms

of its inability to support the communication handshake

between the producer and the consumer, which is necessary

for the hardware implementation of the high level inter-

processor message passing. This handshake involves a Ping-

Pong interaction between the two tasks, and is inefficiently

accommodated in a TDMA based architecture, wherein only

one processor is active during each slot. This results in a

higher latency for the interaction respect to the round robin

case, and this explains the poor performance of TDMA

observed in the experiments. This low level implementation

of message passing primitives made available by RTEMS to

the applications involves a large overhead in terms of bus

transactions. This overhead may result in a relevant system

performance penalty, and derives from a mismatch between

the software architecture and the underlying hardware

platform. In other words, these two layers should be aware of

each other to maximize system performance. Finally, we

observe that the poor performance exhibited by TDMA is

also related to the fact that it is inefficiently accommodated in

AMBA based communication architecture. In fact, the

ultimate objective of the AMBA bus protocol is contention

avoidance, and the signals used by masters and slaves have to

be seen under this perspective (e.g., HBUSREQ, etc.). On the

contrary, TDMA would require a simpler communication

protocol, as the whole contention management procedure is

arbiter driven As a consequence, TDMA might outperform

other arbitration algorithms in proprietary communication

architectures. Despite the lower performance, TDMA-based

arbitration is also attractive in many real-time applications

where predictability is a critical requirement.

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1105

Fig.9 Bus access delays for benchmark with independent task

In fact,TDMA reserves a slot to each processor regardless of

the current workload, thus making constant in time the

bandwidth perceived by each processor, independently of the

traf®cgenerated by the other masters. Consider, for instance,

a system composed of 10 processor cores. If ®ve of the cores

are used to implement the pipelined streaming application

described in this subsection the frame rate achieved will be

constant and predictable, independently of the traffic

generated by the processors that do not take part in the

pipeline (hereafter called external processors).Using round

robin, the frame rate would be much better than that provided

by TDMA when the traf®cgenerated by the external

processors is negligible, but it would be strongly dependent

on the overall workload, possibly becoming worse than that

of TDMA when external processors perform

memory/communication intensive tasks. No determinism is

not acceptable in many real-time situations.

Fig.10 Throughput of system for different arbitration

schemes

5: CONCLUSION

Beyond two traditional bus arbitration policies (round robin

and TDMA) we consider another technique that periodically

allocates fixed predictable bandwidth to time-critical

processors (``slot reservation''). Three workloads are analyzed

on our multiprocessor simulation platform (mutually

dependent tasks, independent tasks and pipelined tasks), and

some important guidelines for designers of SoC

communication architectures have been derived:

1. The optimal bus arbitration policy is not unique, but

strongly depends on the traffic conditions (computation-

dependent, communication-dependent, etc.).

2. The software support for inter-processor communication

plays a crucial role in determining system performance, as it

has to be matched with the underlying hardware platform.

High level communication primitives, although facilitating

the programming step, could be inefficiently implemented on

the available platform, degrading system performance.

3. There exists a trade-off between contention-avoidance bus

arbitration policies (such as TDMA) and contention-

resolution bus protocols (such as AMBA bus). Even though

commercial standards provide degrees of freedom for

performance optimization, the performance achievable by

contention avoidance policies implemented within contention

resolution protocols cannot be fully exploited, because of

their different characteristics.

REFERENCES

1.F Massimo Conti, Marco Caldari, Giovanni B. Vece,

Simone Orcioni, Claudio Turchetti:. “Performance Analysis of

Different Arbitration Algorithms of the AMBA AHB Bus”.

2.Yu-jung huang, Yu-hung chen, Chien-kai yang, and Shih-jhe

lin:”Design and Implementation of a Reconfigurable Arbiter”.

3.Archana Tiwari1 & D.J.Dahigaonkar: “Amba dedicated

DMA controller with multiple masters using VHDL”.

4.Yu-Jung Huang, Ching-Mai Ko, and Hsien-Chiao

Teng:”Design and Performance Analysis of A Reconfigurable

Arbiter”.

5.Francesco poletti, Davide bertozzi,Luca benini:

Performance Analysis of Arbitration Policies for SoC

Communication Architectures.

6.Yu-Jung Huang, Ching-Mai Ko, and Hsien-Chiao Teng:

“Design and Performance Analysis of A Reconfigurable

Arbiter”.

BHAVANA L* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-4, 1096 – 1106

IJESAT | Jul-Aug 2012

Available online @ http://www.ijesat.org 1106

7.Varsha vishwarkama, Abhishek choubey, Arvind Sahu:

“Implementation of AMBA AHB protocol for high capacity

memory management using VHD”.

8.Massimo Conti, Marco Caldari, Giovanni B. Vece, Simone

Orcioni, Claudio Turchetti: “Performance Analysis of

Different Arbitration algorithms of the AMBA AHB Bus”.

9.Vimlesh Sahu, Dr. Ravi Shankar Mishra, Puran Gour: “

Design of High Performance AMBA AHB Reconfigurable

Arbiter on system- on- chip”.

10. Ashutosh kumar Singh, Vimlesh sahu, Kush soni: “Design

and Implementation of High Performance AHB Arbiter for on

chip Bus Architecture”.

