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Abstract 

Resolution is a big issue in SOC (System On Chip) while dealing with number of masters trying to sense a single data bus. The 

effectiveness of a system to resolve this priority resides in its ability to logical assignment of the chance to transmit data width of the 

data, response to the interrupts, etc. The purpose of this seminar report is to propose the scheme to implement such a system using the 

specification of AMBA bus protocol. The scheme involves the typical AMBA features of ‘single clock edge transition’, ‘split 

transaction’, ‘several bus masters’, ‘burst transfer’. The bus arbiter ensures that only one bus master at a time is allowed to initiate 

data transfers. Even though the arbitration protocol is fixed, any arbitration algorithm, such as highest priority or fair access can be 

implemented depending on the application requirements. The design architecture is written using VHDL (Very High Speed Integrated 

Circuits Hardware Description Language) code using Xilinx ISE Tools. This paper aims at covering the basics of buses, AMBA bus 

basics, overview of AHB Arbiter, various arbitration algorithms, their comparison, and finalize the best suitable algorithm for the 

above implementation. 
 

Index Terms: Amba bus, AHB, ASB, AHB, VHDL, round robin 

-------------------------------------------------------------------***---------------------------------------------------------------------- 

1: INTRODUCTION 

1.1Buses 

Buses are shared communication media used by devices to 

“talk to” each other both on-chip and off-chip. The 

communication actions which take place can carry both data 

and control structures. 

 
The BUS Specification  

AHB (AMBA High-performance Bus) is a bus protocol 

introduced in AMBA specification version 2 published by 

ARM limited Company. In addition to previous release, it has 

the following features:  

 Single edge clock protocol  

 Split transaction  

 Several BUS Master  

 Burst transfers   

 Pipelined operations  

 Single cycle bus master handover  

 Non-tristate implementation  

 Large bus-widths (64/128 bit)  

 The AMBA specification describes an on-chip 

communications standard for designing High-

performance 16 and 32-bit microcontrollers, signal 

processors and complex peripheral devices. 

 AMBA has been proven in and is being designed 

into: 

 • PDA microcontrollers, with a high number of 

integrated peripherals but also with very low power 

consumption 

 Multi-media microcontrollers with floating-point co-

processors, on-chip video controller and high 

memory bandwidth 

 
Fig.1 Bus basics: order and broadcast properties 
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• Complex peripheral ASICs for consumer products 

• Digital mobile communication devices integrating control 

and signal-processing functions 

ARM‟s policy is to encourage the use of AMBA wherever 

possible. ARM partners have access to HDL models, 

development boards and other tools that support AMBA. 

 

AMBA Specification 

The AMBA specification defines: 

• A high-speed, high-bandwidth bus, the Advanced System 

Bus (ASB) 

• A simple, low-power peripheral bus, the Advanced 

Peripheral Bus (ASP) 

 
Fig.2 AMBA Bus 

 

• Access for an external tester to permit modular testing and 

fast test of cache RAM 

• Essential housekeeping operations (reset/power-up, 

initialization and power-down) 

 
 

Fig.3 A typical AMBA-based microcontroller 

 A typical AMBA-based microcontroller shows: 

 

1.1.1 The Advanced System Bus (ASB) 

The ASB is designed for high-performance, high-bandwidth 

usage: 

• Non-multiplexed (i.e. separate) address and data buses 

• Support for pipelined operation (including arbitration) 

• Support for multiple bus masters, with low silicon overhead 

• Support for multiple slave devices, including a bridge to the 

peripheral bus (APB) 

• Centralized decoder and arbiter 

 

Absolute transfer rates depend on many design factors, but, for 

comparison purposes,if a 32-bit data path and a 100MHz clock 

are assumed, 200Mbytes/sec rate can be achieved. These 

figures are not limited by the specification but are simply 

provided for clarification. Multiple bus masters are supported 

through the use of bus request, bus grant and bus lock signals. 

Use of these signals is optional; if you have a single bus 

master, you do not have the penalty of implementing these bus 

control lines.The high-performance bus which is the main 

system „backbone‟. This bus is also able to sustain the data 

rates required by the external us interface. The CPU and other 

bus masters (such as a DMA controller), and high-speed local 

memory are normally connected to this bus. (The ASB is 

connected by a bridge to the simpler APB) 

 

1.1.2 The Advanced Peripheral Bus (APB) 

The APB is designed to be a secondary bus to ASB, connected 

by a bridge (which limits the ASB loading). APB is a much 

simpler bus and has a low power focus: 

• Data access is controlled by select and strobe only (i.e. no 

clock, and thereby reducing power) 

• Almost zero-power consumption when bus is not in use 

• Simple unpiplined interface, typical of that required by many 

simple peripheral microcells. 

 

Data transfer rates are dependent on the speed of the 

peripherals. A single read or write cycle takes 5 clocks, so 

assuming a 32-bit data path and 100MHz clock, the data rate 

is 80Mbytes/sec. These figures are not limited by the 

specification but are simply provided for clarification. The 

data bus of the APB can be more readily optimized to suit the 

peripherals connected. Many peripherals have narrow data 

path needs, and one mechanism may be to connect the 32-bit 

peripherals next to the bridge and 8-bit peripherals furthest 

away, reducing the die area needed for the bus. Although the 

clocking strategy is not specified in AMBA, the partitioning 

provided by the bridge and APB does suggest a good starting 

point for minimizing power consumption. Many peripherals 

(timers, baud rate generators, pwm units) require a divided-
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down system clock, and locating a single programmable 

divider adjacent to the bridge is convenient and power-

efficient. 

 

The simple, low-speed, low-power peripheral bus. This is 

often, but not always, a narrower bus and is designed to be 

simple (i.e.unpipelined) for connecting many common 

peripherals such as timers, parallel I/O ports, UARTs, etc. (By 

placing these infrequently accessed peripherals on the APB, 

and partitioning them away from the ASB, loading on the 

ASB is reduced and allows maximum performance on the 

ASB to be more readily achieved.) 

 

1.1.3 Advanced High-performance Bus (AHB) 

AHB is a bus protocol introduced in Advanced 

Microcontroller Bus Architecture version 2 published by 

ARM Ltd company. In addition to previous release, it has the 

following features: 

 single edge clock protocol 

 split transactions 

 several bus masters 

 burst transfers 

 pipelined operations 

 single-cycle bus master handover 

 non-tristate implementation 

 large bus-widths (64/128 bit).  

 2nd-generation AMBA system bus 

 Synchronous, no multiplexed bus 

 Separate read, data buses 

 Multimaster, arbitrated bus 

 32-, 64-, 128-, 256-bit data paths 

 32-bit address bus 

 Pipelined, split transactions 

 Supports bursts (4-, 8-, 16-beat) 

 Non-tristate, multiplexer implementation 

 

The AHB takes on many characteristics of a standard plug-in 

bus. It's a multimaster with arbitration, putting the address on 

the bus, followed by the data. It also supports wait-state 

insertion and has a data-valid signal (HREADY). This bus 

differs in that it has separate read (HRDATA) and write 

(HWDATA) buses. These bus connections are multiplexed, 

rather than making use of a tristate multiple connections. 

 

AHB supports bursts, with 4-, 8-, and 16-beat bursts, as well 

as undefined-length bursts and single transfers. Bursts can be 

address wrapped, i.e., staying within a fixed address range. 

Bursts can't cross a 1-kB address boundary, though. Slaves 

can insert wait states to adjust its response (up to 16). 

 

All bus operations are initiated by bus masters, which also can 

serve as a slave. The master-generated address is decoded by a 

central address decoder that provides a select signal to the 

addressed bus slave unit. The bus master can "lock" the bus, 

reserving it with the central arbiter for a series of locked 

transfers. 

 

The slave unit has the option to terminate a transaction as an 

error, signal the master to retry, or split the transaction for 

later completion. Split transactions enable the slave to defer 

the operation until it's able to accomplish it, thereby releasing 

the bus for other accesses. The slave signals a split transaction 

and saves the master number (HMASTER\[]). When ready to 

complete the transaction, the slave signals the arbiter with the 

master number. When the arbiter grants bus access to the 

master, it restarts the transaction. No master can have more 

than 1 pending split transaction. 

 

AHB supports 32, 64, and 128-bit data-bus implementations 

with a fixed 32-bit address bus. It is a synchronous bus that 

supports bursts and pipelining of accesses to improve 

throughput. The AHB system bus and APB peripheral bus are 

linked through a 'bridge' that acts as the master to the 

peripheral bus slave devices. The peripheral bus (APB) is a 

simpler, lower-speed, low-power bus for slower devices. It is 

typically used for connecting peripherals such as UARTS, 

rather than for SRAM, Flash etc. as these will be on the AHB, 

requiring the additional bandwidth. The AHB and APB can 

run at different clock rates. AHB supports multiple masters 

(either through a central arbiter, or through slave level arbiters 

in the case of a multi-layer AHB-lite system). The arbiter has 

the task of determining which master gets to do an access. 

Every transfer has an address/control phase and a separate data 

phase. They're both pipelined (able to start the next transfer's 

arbitration and address phase while finishing the current 

transfer).The address transfer is always followed by the data 

phase. A slave (memory or peripheral device which accepts a 

read or write request from a master) can prolong the transfer 

(add wait states) using the HREADY signal. Separate uni-

directional buses for read (HRDATA) and write (HWDATA) 

are used. 

 

Burst Support  

AHB supports bursts, which can either be of undefined-length 

or fixed length (4, 8 or 16 beats). There is also, of course, the 

possibility to do a single transfer (one read or write). Bursts 

may be performed to a fixed address (eg for FIFO access), 

increment addresses (in steps of a single increment equal to 

the size of the access) or wrap (where a critical word within a 

cache line is accessed first). Bursts may not cross a 1kB 

boundary, to simplify slave handling of bursts and address 

decoder design. The address from a master is decoded by a 

http://en.wikipedia.org/wiki/ARM_Ltd
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central address decoder that provides a select signal to one of 

the slaves. 

 

Support for bus locking, error signaling and split 

accesses 

The bus master can lock the bus, allowing it to perform a 

sequence of atomic, locked transfers, with guarantees that 

other masters cannot perform intervening accesses. This is 

typically used to implement mutexes or semaphores between 

masters. Slaves may respond to accesses by the master by 

signaling OK, or by reporting an error. In the full AHB system 

(but not AHB-lite), slaves may also give a retry response, or 

the less commonly used split response. Split transactions let 

the slave to delay completion of the access until ready but to 

free the bus for other accesses by a different master. The slave 

records the number of the master and signals the arbiter when 

the split transfer can complete. When the arbiter re-grants the 

bus to that master, it restarts the transaction. A master can 

have only one pending split transaction.  

 

AHB (Advanced High-performance Bus) X as a later 

generation of AMBA bus is intended for high performance 

high-clock synthesizable designs. It provides high-bandwidth 

communication channel between embedded processor (ARM, 

MIPS, AVR, DSP 320xx, 8051, etc.) and high performance 

peripherals/ hardware accelerators (ASICs MPEG, color LCD, 

etc), on-chip SRAM, on-chip external memory interface, and 

APB bridge. AHB supports a multiple bus master‟s peration, 

peripheral and a burst transfer, split transactions, wide data 

bus configurations, and non tristate implementations. 

Constituents of AHB are: AHB-master, slave-, arbiter-, and 

Xdecoder.A simple transaction on the AHB consists of an 

address phase and a subsequent data phase (without wait 

states: only two bus-cycles). Access to the target device is 

controlled through a MUX (non-tristate), thereby admitting 

bus-access to one bus-master at a time. AHB-Lite is a subset 

of AHB which is formally defined in the AMBA 3 standard. 

This subset simplifies the design for a bus with a single 

master. 

 

1.2 AHB Components 

AHB master is able to initiate read and write operations by 

providing an address and control information. Only one bus 

master is allowed to actively use the bus at any one time.(max. 

16) 

 

AHB slave responds to a read or write operation within a 

given address-space range. The bus slave signals back to the 

active master the success, failure or waiting of the data 

transfer. 

 

AHB arbiter ensures that only one bus master at a time is 

allowed to initiate data transfers. 

 

AHB decoder is used to decode the address of each transfer 

and provide a select signal for the slave that is involved in the 

transfer. A single centralized decoder is required in all AHB 

implementations. 

 

2: AMBA BUS ARBITRATION  

 
Fig.4 AMBA bus arbitration 

As with other AHB blocks, the arbiter may be very simple, or 

quite complex. There may be up to 16 masters in the system. 

Each one of them has a HBUSREQ bus request output which 

goes to the arbiter and a corresponding HGRANT input which 

the arbiter uses to indicate which master has been selected. 

The AHB specification does not provide any specific guidance 

on how  the arbiter should decide which master gets the bus. 

Schemes in common use are either priority based or cyclic. In 

the priority case, one master is more important than the other 

and if that master requests the bus, it will always be granted. A 

low priority master is granted only if no higher priority 

requests are present. In the cyclic case, each master is given a 

turn at controlling the bus for a certain number of cycles, then 

the next master gets it for some cycles and so on. It is possible 

(but rare) for HADDR to be used by the arbiter - for example, 

it may be designed to recognize that when a master is 

accessing a particular slave, that access may have higher (or 

lower) priority than normal. 

 

http://en.wikipedia.org/wiki/MUX


BHAVANA L* et al.                                                                                                                                                                        ISSN: 2250–3676 

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY                   Volume-2, Issue-4, 1096 – 1106 

 

IJESAT | Jul-Aug 2012 

Available online @ http://www.ijesat.org                             1100 

It is often a good idea to design the arbiter such that it tries to 

avoid changing ownership of the bus until the end of the burst, 

as this maximizes available bandwidth. It is not possible to do 

this in all cases, though. Obviously, if the slave returns 

ERROR, RETRY or SPLIT, the master may choose to end the 

burst. For an INCR burst of undefined length, the arbiter 

cannot know when the burst will end and therefore cannot 

predict when it is safe to handover to another master. Even for 

a fixed length burst (where HBURST indicates the transfer 

will have 4, 8 or 16 bits), while the arbiter can be designed to 

recognize this case and count the number of transfers, it is not 

possible to guarantee that the burst completes. The difficulty is 

that HBURST is sampled on the first rising HCLK edge of the 

burst, but this could co-incide with a cycle where the arbiter 

has already to change HGRANT. So, the arbiter would change 

control of the bus on the first cycle of the burst. To avoid this 

problem would need HBURST to be factored combinatorially 

into the HGRANT generation logic and the specification does 

not allow that. 

 

2.1 AHB Arbitration 

 Features  

 Round robin priority  

 Scalable (Up to 16 masters)  

 AMBA® 2.0 AHB interface  

 HWDATA, HADDR and AHB control steering  

 HBUSREQ and HGRANT arbitration  
The Ahb Arbiter is used in AMBA® 2.0 AHB multi-master 

systems to arbitrate the access to the AHB bus. The Ahb 

Arbiter is basically a “traffic controller” which allows the 

AHB bus to be shared between multiple bus masters such as 

processors, DMA controllers, and peripheral core master 

interfaces.  

 

The Ahb Arbiter uses a round robin priority scheme with 

Master0 having the default priority. This priority scheme 

assures that each master equally has it‟s turn at acquiring and 

completing an AHB bus transaction. Each inactive master is 

locked out (HLOCK) while the active master has access to the 

bus to prevent contention.  

 

The Ahb Arbiter steers all the AHB HWDATA, HADDR, 

HTRANS, HWRITE, HSIZE and HBURST signaling from 

each master to the AHB system bus.  

 

The Ahb Arbiter is delivered as a three master arbiter but can 

easily be configured to allow up to sixteen AHB bus masters.  

IP Package  

 

The Ahb Arbiter package includes fully tested and verified 

Verilog source. The Ahb Arbiter can also be delivered as an 

FPGA Netlist for Xilinx, and Altera FPGAs. 

 

Fig.5 AHB Arbitration 

2.2 Limitation of AHB  

There are literally a billion or more shipped devices containing 

systems built around the AMBA AHB bus architecture. It is 

relatively easy to understand and design around. It's relatively 

synthesis & EDA tool friendly and is widely supported not 

just by ARM and its licensees but also by many other 

semiconductor IP and EDA companies. There are some things 

that AHB doesn't do well, though. On this page, we'll briefly 

discuss some of those things. 

 

Lack of parallelism 

One issue in higher-performance systems is that the original 

protocol lacks support for parallelism. Although multi-layer 

AHB allows multiple masters to talk to multiple slaves at the 

same time, this is still done through a matrix of point-to-point 

AHB-lite systems and there is consequently always in-order 

completion to a particular master. It means that slave wait 

states cannot be hidden to the master and there is no ability to 

have multiple outstanding requests. 

 

Arbitration overhead 

High arbitration overhead can also be an issue with AHB 

systems. If the full AHB bus request/grant protocol is used 

(rather than multi-layer AHB-lite), then there is a two cycle 

arbitration overhead. Although this can be hidden to some 

extent by the use of bursts, it does mean that designers have to 

think carefully about arbitration and the use of fixed priority 
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or round-robin schemes. AHB-lite removes this problem, but 

there is still the issue of slave-level arbitration and consequent 

variable latency when two masters access the same slave. 

 

Re-usability of components 

Another issue with the bus protocol itself is that any system 

will have two components that are specific to that system. 

Although masters and slaves can (in principle) be re-used from 

one design to the next, the same is not generally true of 

arbiters and decoders. These components are unique to a 

particular system configuration. Further difficulties (not really 

the fault of the AHB protocol itself) are that although masters 

and slaves should conform fully to the specification, often 

what happens is that designers will take short-cuts and omit 

support for those features they don't plan to use. This can 

cause problems when these slaves are re-used elsewhere (or 

indeed in the original design if incorrect assumptions have 

been made about the subset of the full specification used by 

the master). Some examples seen in multiple customer designs 

have been slaves which do not support the master issuing the 

BUSY cycle type and memory slaves which have been unable 

to cope with WRAP write bursts.  

 

Timing closure 

A common problem related to AHB system design is that of 

timing closure. After completing RTL design and starting 

netlist generation (or even as late as STA on post-layout 

netlists), it may be discovered that a timing path is too long for 

the bus clock cycle length. To resolve this typically means 

inserting wait states into the slave design, or (even worse), 

adding cycles to the arbiter or decoder. This needs RTL 

changes and may dramatically decrease system performance.  

 

3: TOPOLOGIES 

In respect to topology on-chip communication architectures 

can be classified as: 

Shared bus: The system bus is the simplest example of a 

shared communication architecture topology and is commonly 

found in many commercial SoCs .Several masters and slaves 

can be connected to a shared bus. A block, bus arbiter, 

periodically examines accumulated requests from the multiple 

master interfaces and grants access to a master using 

arbitration mechanisms specified by the bus protocol. 

Increased load on a global bus lines limits the bus bandwidth. 

The advantages of shared-bus architecture include simple 

topology, extensibility, low area cost, easy to build, efficient 

to implement. The disadvantages of shared bus architecture 

are larger load per data bus line, longer delay for data transfer, 

larger energy consumption, and lower bandwidth. Fortunately, 

the above disadvantages with the exception of the lower 

bandwidth may be overcome by using a low-voltage swing 

signaling technique. 

 

Hierarchical bus: this architecture consists of several shared 

busses interconnected by bridges to form a hierarchy. SoC 

components are placed at the appropriate level in the hierarchy 

according to the performance level they require. Low 

performance SoC components are placed on lower 

performance buses, which are bridged to the higher 

performance buses so as not to burden the higher performance 

SoC components. Commercial examples of such architectures 

include the AMBA bus, Core Connect, etc. Transactions 

across the bridge involve additional overhead, and during the 

transfer both buses remain inaccessible to other SoC 

components. Hierarchical buses offer large throughput 

improvements over the shared busses due to: (1) decreased 

load per bus; (2) the potential for transactions to proceed in 

parallel on different buses; and multiple ward communications 

can be preceded across the bridge in a pipelined manner  

Ring: in numerous applications, ring based applications are 

widely used, such as network processors, ATM switches. In a 

ring, each node component (master/slave) communicates using 

a ring interface, are usually implemented by a token pass 

protocol. 

 3.1 On-chip communication protocols 

Communication protocols deal with different types of resource 

management algorithms used for determining access right to 

shared communication channels. From this point of view, in 

the rest of this section, we will give a brief comment related to 

the main feature of the existing communication protocols. 

 

Static-priority: employs an arbitration technique. This 

protocol is used in shared-bus communication architectures. A 

centralized arbiter examines accumulated requests from each 

master and grants access to the requesting master that is of the 

highest priority. Transactions may be of non-preemptive or 

preemptive type.AMBA, Core Connect... uses this protocol. 

 

Time Division Multiple Access (TDMA): the arbitration 

mechanism is based on a timing wheel with each slot statically 

reserved for unique master. Special techniques are used to 

alleviate the problem of wasted slots. Sonics uses this 

protocol. 

 

Lottery: a centralized lottery manager accumulates request for 

ownership of shared communication resources from one more 

masters, each of which has, statically or dynamically, assigned 

a number of X lottery tickets. 

 

Token passing: this protocol is used in ring based 

architectures. A special data word, called token, circulates on 



BHAVANA L* et al.                                                                                                                                                                        ISSN: 2250–3676 

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY                   Volume-2, Issue-4, 1096 – 1106 

 

IJESAT | Jul-Aug 2012 

Available online @ http://www.ijesat.org                             1102 

the ring. An interface that receives a token is allowed to 

initiate a transaction. When the transaction completes, the 

interface releases the token and sends it to the neighboring 

interface. 

 

Code Division Multiple Access (CDMA): this protocol has 

been proposed for sharing on-chip communication channel. In 

a sharing medium, it provides better resilience to 

noise/interference and has an ability to support simultaneously 

transfer of data streams. But this protocol requires 

implementation of complex special direct sequence spread 

spectrum coding schemes, and energy/battery inefficient 

systems such as pseudorandom code generators, modulation 

and demodulation circuits at the component bus interfaces, 

and differential signaling. 

 

4: ARBITRATION ALGORITHMS 
 

In this section we briefly present and discuss the key features 

of the arbitration   

4.1. Round-Robin 

A round-robin arbitration policy is a token passing scheme 

wherein fairness among masters is guaranteed, and no 

starvation can take place. In each cycle, one of the masters (in 

round-robin order) has the highest priority for access to a 

shared resource. If the token-holding master does not need the 

bus in this cycle, the master with the next highest priority 

who sends a request can be granted the resource. The 

advantages of round-robin are twofold: 

Unused time slots are immediately re-allocated to masters 

which are ready to issue a request, regardless to their access 

order. This reduces bus under-utilization in comparison with 

a statically fixed slot allocation that might grant the bus to a 

master which is not going to carry out any communication. 

The worst-case waiting time for the bus access request of a 

master is reliably predictable (being proportional to the 

number of instantaneous requests minus one), even though 

the actual waiting time is not. The uncertainty on the actual 

bandwidth that can be granted to a master is the major 

drawback of this scheme. 

 

4.2. TDMA 

A time division multiple access scheme is based on the fixed 

allocation of a slot to each master, so that each of them is 

guaranteed fixed and predictable bandwidth. Unfortunately, 

high priority communications in a TDMA-based architecture 

may incur significant latencies, because the performance 

provided by this scheme strongly depends on the time-

alignment of communication requests and slot allocation and 

therefore on the probability of dynamic variations of the 

request patterns. 

 

4.3. Slot Reservation 

This arbitration policy can be seen as a limit case of TDMA, 

in that only one master is periodically allocated a slot for the 

contention-free access to the bus. For the inter-slot time, we 

decided to manage the contention among the remaining 

masters in a round-robin fashion. Although this is not a 

conventional scheme for SoC communication architectures, 

we propose this policy to combine the advantages of the 

above mentioned schemes: one master is given priority in the 

competition for bus access (in terms of guaranteed fixed 

bandwidth), while all other masters can contend for the 

shared communication resource avoiding the risk of 

starvation. 

 

4.4 Performance analysis of arbitration algorithms 

Our objective was to stress the distinctive features of the 

considered arbitration algorithms so to come up with 

selection guidelines under different system workloads. To this 

purpose, we identified three scenarios at the application level, 

corresponding to three different communication patterns: 

mutually dependent tasks, independent tasks, and pipelined 

tasks. 

 

4.4.1. Mutually Dependent Tasks 

Let us assume a workload wherein one task is running on 

each processor and that the correct execution of each task 

involves synchronization with the other ones. In particular, let 

us assume that all tasks have to synchronize with each other 

at predefined points of the multiprocessor benchmark. In this 

case, system performance optimization translates to avoiding 

that some tasks reach the synchronization point much earlier 

or much later than the others, because this would generate 

idle waiting time for the unsynchronized task. An example 

thereof is represented by the bootstrap stage of RTEMS on 

the multiprocessor system. RTEMS selects one processor to 

act as a master and all other ones are considered as slaves, 

and they play a slightly different role in the booting 

operation. Each processor (master and slaves) at first 

independently initializes its private memory and hardware 

devices, and then synchronization has to take place at the 

shared memory. In fact, the master processor is in charge of 

initializing the shared memory and of allocating the structures 

for inter-processor communication. Then it starts polling the 

status variables of the slave processors, until they are all set-

to ``ACTIVE,'' indicating that the slave processors have 

defined their own data structures in the shared memory. 

When this synchronization condition occurs, the master 

processor sets those variables to ``FINISHED,'' notifying the 
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slaves that the initialization of the shared memory is over and 

that each processor can independently complete its bootstrap 

stage and load  task 

 

 

Fig.6 Execution time for bootstrap routine of RTEMS on the 

microprocessor platform 

4.4.2. Independent Tasks 

The second scenario we investigated makes use of a 

benchmark consisting of independent tasks, each running on a 

specific processor. This system workload does not have any 

synchronization point, nor does it involve inter-processor 

communication. The above scenario has been implemented 

on our simulation platform by executing the same matrix 

multiplications on each processing element. Matrices are 

initially stored in each processor's private memory, and the 

traffic generated on the bus is associated with read operations 

of matrix elements and to write transactions storing the 

results back in the memory. Tasks execution and consequent 

measurements are triggered once RTEMS has booted on all of 

the processors. The performance metric we select for this 

class of benchmarks is the average task execution time, given 

the independent nature of the tasks themselves. Our 

experiments have been carried out ranging the number of 

processors from 2 to 10, analyzing the scaling properties of 

the performance metric. Results relative to the tasks 

execution times are reported in Figure 7, for the cases of 4 

and 8 active processors. When four tasks are running, we 

observe that round robin outperforms the other schemes. In 

fact, if we randomly select one processor and periodically 

grant it a slot for contention-free access to the bus, the 

improvement of its execution time translates to a relevant 

degradation of the performance for the other processors, and 

the average task execution time of the system increases. 

Though it is interesting to observe that a slot allocation of 

9000 ns manages to balance the execution times of all 

processors, so that on average all tasks complete within the 

same time, similarly to what happens with round robin or 

TDMA, and this is the most efficient approach for this 

scenario. The relevant difference between the three arbitration 

algorithms is in the average execution time that can be 

obtained by each of them under the hypothesis of balanced 

task execution times. The balancing effect for slot reservation 

(achieved by properly tuning the slot duration) occurs at an 

average execution time which lies between that provided by 

round robin (the optimal one) and that provided by TDMA 

(worst case).The same effect can be observed with 8 

processors, even though the average values increase and the 

gap between round robin and slot reservation decreases. One 

might guess that the performance of TDMA is likely to 

increase for smaller values of TDMA slot respect to those 

reported in Figure 7, so to reduce bus idleness. The answer to 

this question is reported in Figure 8, where the average 

execution time 

                             

 

Fig.7 Execution time for a benchmark consisting of 

independent task 

 

Fig.8  Comparison between the performance of Round robin 

and TDMA for small values of TDMA slot 
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4.4.3. Pipelined Tasks 

A last scenario that is worth investigating is the one wherein 

the impact of arbitration policies on the throughput of a 

distributed signal processing application can be assessed. 

While in the previous subsection we analyzed a system 

workload wherein the traffic across the bus did not depend on 

inter-processor communication at all, but was only related to 

computation, now we want most of bus transactions to be 

related to communication among processors. We want to 

relate the performance of such a system to the way 

communication related traffic is accommodated on the bus by 

the different arbitration policies. To this purpose, we set up a 

multiprocessor system wherein different tasks execute in a 

pipelined fashion; with balanced computation workloads for 

all of the processors (they execute matrix multiplications). On 

top of the first processor, a task generates matrices that are 

handed over to the second processor of the pipeline. At each 

stage, the computation is carried out and the result 

transmitted to the next stage. In other words, the pipeline 

consists of couples of producer consumer tasks, and the 

communication occurs, at a high level of abstraction, by 

means of FIFO queues. The performance metric for this 

system is the throughput, denned as the number of matrices 

per second produced by the last processor of the pipeline (i.e., 

frame rate).Figure 10 shows the frame rate provided by the 

arbitration policies, changing the value of the slot duration for 

slot reservation and TDMA. While the performance of slot 

reservation is highly sensitive to the slot time, the 

performance of TDMA is almost independent of it. 

Surprisingly enough, although both the workload and the 

communication needs of the pipelined processors are 

perfectly balanced, slot reservation performs better than 

TDMA for a wide range of slot durations. This can be 

explained by looking at the performance of round robin, that 

is always much better than TDMA. Since our slot reservation 

algorithm implements a round-robin arbitration policy during 

inter-slot times, as long as the slot duration is much shorter 

than the inter slot time, the performance of slot reservation is 

dominated by the performance of round robin, while it 

becomes much worse when larger slots are used. Therefore, 

in Figure 10 only two experiments for slot reservation have 

been carried out, because they are sufficient to clarify the 

dependence of execution time as a function of the slot 

duration. Since the frame rate provided by slot reservation is 

always smaller than that of round robin, we can say that slot 

reservation is counterproductive in this case. In fact, there is 

no reason for guaranteeing a constant bandwidth to a single 

stage of a pipeline if the same bandwidth cannot be 

guaranteed to all stages. On the other hand, TDMA 

guarantees a constant bandwidth to all processors in the pipe, 

but its overall performance is lower than that of round robin. 

This fact can be explained only by looking at the hardware 

implementation of high-level interprocessor communication 

primitives. In our system, the producer consumer paradigm is 

implemented by means of the RTEMS message manager, 

which makes use of a communication protocol among tasks 

based on message queues. At the core of this protocol there is 

the inter processor communication mechanism seen in Figure 

4. The procedure is initiated by the producer, which creates a 

global queue in its private memory, and writes messages to be 

sent in it. When the consumer is ready to receive a message, a 

notification is given to the producer by writing a request 

message into the shared memory and by generating an 

interrupt for the producer itself. The interrupt service routine 

of the producer reads the message from shared memory and 

assembles data to be sent in a message which is written back 

to shared memory. Finally, a write transaction to the 

consumer interrupt slave asserts an interrupt which allows the 

consumer to pick up its message from shared memory. In this 

context, TDMA poor performance can be explained in terms 

of its inability to support the communication handshake 

between the producer and the consumer, which is necessary 

for the hardware implementation of the high level inter-

processor message passing. This handshake involves a Ping-

Pong interaction between the two tasks, and is inefficiently 

accommodated in a TDMA based architecture, wherein only 

one processor is active during each slot. This results in a 

higher latency for the interaction respect to the round robin 

case, and this explains the poor performance of TDMA 

observed in the experiments. This low level implementation 

of message passing primitives made available by RTEMS to 

the applications involves a large overhead in terms of bus 

transactions. This overhead may result in a relevant system 

performance penalty, and derives from a mismatch between 

the software architecture and the underlying hardware 

platform. In other words, these two layers should be aware of 

each other to maximize system performance. Finally, we 

observe that the poor performance exhibited by TDMA is 

also related to the fact that it is inefficiently accommodated in 

AMBA based communication architecture. In fact, the 

ultimate objective of the AMBA bus protocol is contention 

avoidance, and the signals used by masters and slaves have to 

be seen under this perspective (e.g., HBUSREQ, etc.). On the 

contrary, TDMA would require a simpler communication 

protocol, as the whole contention management procedure is 

arbiter driven As a consequence, TDMA might outperform 

other arbitration algorithms in proprietary communication 

architectures. Despite the lower performance, TDMA-based 

arbitration is also attractive in many real-time applications 

where predictability is a critical requirement. 
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Fig.9 Bus access delays for benchmark with independent task 

In fact,TDMA reserves a slot to each processor regardless of 

the current workload, thus making constant in time the 

bandwidth perceived by each processor, independently of the 

traf®cgenerated by the other masters. Consider, for instance, 

a system composed of 10 processor cores. If ®ve of the cores 

are used to implement the pipelined streaming application 

described in this subsection the frame rate achieved will be 

constant and predictable, independently of the traffic 

generated by the processors that do not take part in the 

pipeline (hereafter called external processors).Using round 

robin, the frame rate would be much better than that provided 

by TDMA when the traf®cgenerated by the external 

processors is negligible, but it would be strongly dependent 

on the overall workload, possibly becoming worse than that 

of TDMA when external processors perform 

memory/communication intensive tasks. No determinism is 

not acceptable in many real-time situations.  

 

 

Fig.10 Throughput of system for different arbitration 

schemes 

5: CONCLUSION 

Beyond two traditional bus arbitration policies (round robin 

and TDMA) we consider another technique that periodically 

allocates fixed predictable bandwidth to time-critical 

processors (``slot reservation''). Three workloads are analyzed 

on our multiprocessor simulation platform (mutually 

dependent tasks, independent tasks and pipelined tasks), and 

some important guidelines for designers of SoC 

communication architectures have been derived: 

 

1. The optimal bus arbitration policy is not unique, but 

strongly depends on the traffic conditions (computation-

dependent, communication-dependent, etc.). 

 

2. The software support for inter-processor communication 

plays a crucial role in determining system performance, as it 

has to be matched with the underlying hardware platform. 

High level communication primitives, although facilitating 

the programming step, could be inefficiently implemented on 

the available platform, degrading system performance. 

 

3. There exists a trade-off between contention-avoidance bus 

arbitration policies (such as TDMA) and contention-

resolution bus protocols (such as AMBA bus). Even though 

commercial standards provide degrees of freedom for 

performance optimization, the performance achievable by 

contention avoidance policies implemented within contention 

resolution protocols cannot be fully exploited, because of 

their different characteristics. 
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