
D.R LADDHA* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-6, 1603 – 1607

IJESAT | Nov-Dec 2012

Available online @ http://www.ijesat.org 1603

IMPLEMENTATION OF ADAPTIVE VITERBI DECODER THROUGH

FPGA

Ms. D.R.Laddha, Prof. A.O.Vyas

G.H. Raisoni College of Engineering & Management Amravati, India , deepaliladdha29@gmail.com
G.H. Raisoni College of Engineering & Management Amravati, India.

Abstract

The demand for high speed, low power and low cost for Viterbi decoding especially in wireless communication are always required.
Thus the paper presents the design of an adaptive Viterbi decoder that uses survivor path with parameters for wireless communication
in an attempt to reduce the power and cost and at the same time increase the speed.

A VHDL description has been adopted to embed the lowpower design. The adopted design were coded in VHDL and implemented on
a SPARTAN 3. The results show that speed has been increased since the processing execution time has been reduced that is used to
find the correct paths. Furthermore, the survivor path decoder is capable of supporting frequency up to 790 MHz for constraint
lengths 7, and 9 , rate 1/3 and long survivor path is 4. Finally, the cost has been reduced since the different constraint length didn’t
affect of the complexity of the decoder and the processing time of computing the correct path.

Keywords : Convolutional Encoder, Adaptive Viterbi Decoder,Survivor Path, FPGA Implementation

---*****--

INTRODUCTION
The Viterbi algorithm is a maximum-likelihood algorithm that
can be applied to decoding of convolutional codes. A Viterbi
decoder typically consists of three building blocks, as shown
in Fig.1

1. Branch Metric Unit (BMU) that calculates the
likelihood for the possible transitions in a trellis;

2. Add-Compare-Select Units (ACSUs) that discard
suboptimal trellis branches based on current branch
metrics and previously accumulated state metrics;

3. Survivor Path Unit (SPU) that works upon the
decisions from the ACSUs to produce the decoded
bits along the reconstructed state sequence through
the trellis.

Channel Decoded

Symbols sequence

Fig. 1. Principal Block Diagram of a Viterbi Decoder.

The Branch Metric Unit (BMU):

The responsibility of this unit is to compute the Hamming
code between the expected code and the receiving code as a
frame. Each frame contains four symbols. At each processing,

the BMU finds the Hamming code for these four symbols.
This will be compared with the expected code represented by
the address value that replaced by a counter started with '0000'
to '1111'. The followings explain this operation:

ACSUs

BMU SPU

D.R LADDHA* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-6, 1603 – 1607

IJESAT | Nov-Dec 2012

Available online @ http://www.ijesat.org 1604

Step 1 :In the first frame and starting with ST=0; the BMU
computes Hamming code between, Rx0 and EC0 (ST). The
variable between these two arches represent the value of the
address ROM.

Step 2 :STnew = ST0 (STold).

Step 3 :Next the Hamming code between Rx1 and the value
stored in the EC0 (ST) is computed.

Step 4 :STnew = ST0 (STold).

Step 5 :The Hamming code between Rx2 and the value stored
in the EC0 (ST) is computed.

Step 6 :STnew = ST0 (STold).

Step 7 :The Hamming code between Rx3 and the value stored
in the EC0 (ST) is computed.

Step 8 :STnew = ST0 (STold).

At each step, the Hamming code is computed and the total
value is stored in the Hamming code buffer, ST in the ST
buffer, and counter value in the address buffer. All the above
steps chose ST0 and EC0 because the first value of the counter
is '0000'. The selectivity of ST1, and EC1 will depend on
counters value at each location bits. The BMU repeated all the
steps for counter "0010" to "1110" for even values only while
the odd values are rejected because the computation of
Hamming code at each bit location is the same with the past
even value except the last Hamming code will be (3-computed
value), and the STnew=ST0 (STold)+32.

All the above steps will be repeated for each sub-frame (four
symbols). Therefore more execution time will be required to
find the suitable path and to select the output code. The
parallel operation of these step become more efficiently to
reduce the execution processing time. The parallel execution
can be divided in two types. The first type involves a
parallelism to compute the Hamming code in the 8th
probability paths, and this type need four BMU. Each BMU is
responsible in the computation of the Hamming code of
suitable received symbol with expected code.

Another type for parallel computing Hamming code includes a
parallelism of the all probability paths. The four symbols, give
a (16) probability path starting from path '0000' to '1111', need
an even paths for computing the Hamming codes of all nodes.
This model for parallel computing need a memory bank RAM
to store the Hamming code of each node. It is clear that this
design will be more complicated and need more elements

(memory banks, comparator units… act) to represent this
model. Therefore, it has not been considered in the proposed
design.

The Add Compare Select Unit (ACSU):

This ACSU is the main unit of the survivor path decoder. The
function of this unit is to find the addition of the four
Hamming code received from BMU's and to compare the total
Hamming code stored in the HC_buffer for the even and odd
paths. This unit also compares the values and store, the
minimum Hamming code, and the counter's value. At the end
of the 8th even state, the minimum Hamming code and the
counter value are stored in HC_buffer and AD_buffer. The
AD_buffer represents the opposite output code. The other
value stored in ST_buffer represents the address of the next
state number.

For each four symbols selected, the initial value of HC_buffer
is set to '1100' and compared to find the minimum value. The
3 bits counter is used in the ACSU and SMU. The ACSU can
be used as an address location of the comparator between
sixteen different paths and select the suitable counter value
that synchronized with minimum value of Hamming code. The
same counter will be used in the SMU to lead the address
ROM to find the correct state number and expected code for
the next state. The block diagram of the ACSU and the 3 bits
counter is as shown in Fig. 2.

D.R LADDHA* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-6, 1603 – 1607

IJESAT | Nov-Dec 2012

Available online @ http://www.ijesat.org 1605

Figure 2 . Block diagram of ACSU

Many processing steps are executed through ACSU, the
following processing steps explain the operation of this unit.

Step 1: Initialization process.
At the beginning, the 3 bits counter is started with '000'. The
four Hamming codes of four symbols encoded data with noise,
the state number of the next state, and the enable signal of the
result of AND gate of the 3 bits counter are entered to ACS.
The MSB of the Hamming code of the last symbols is taken to
decide if the Hamming code of the last symbols is the even
path or the odd path and which one is the minimum value.

If MSB is '1' the Hamming code is '2' or '3' and this give an
indication that the Hamming code take the odd path of the last
symbol with Hamming code is '1' or '0' and this represent the
minimum path of the two paths (even and odd). The NOT gate
is used to find the Hamming code of the odd path, while the
MSB is used to control the output of the multiplexer, updated
the state number, and select the correct output code.

1. If MSB is '0', the output of the multiplexer is set to the value
of the LSB whereas if the MSB is '1', the output of multiplexer
is NOT the value of LSB.
2. If MSB is '0', the state number ST0 represents the
ADDRESS value of the next state otherwise it means that the
ADDRESS of the next state is equal to ST0+32 and the 6th
bank 0 ST0 to '1' are required.
3. If MSB is '0', the last bank of the output code is '0' and the
even counter value is the correct path Otherwise, while the
value '1' of MSB is set '1' to the last bank of output code, and
indicate that the odd counter value is the correct path.

Step 2: Adding process.
The adder block computes the total sum of the three Hamming
codes with the output value of multiplexer. The three 2 bits
Hamming codes with 1 bit output of the multiplexer are added
and the output of the adder is formed by 4 bits and sent it to
the comparator unit. At the beginning of each four symbols,
the HC_buffer is set to '1100' which represents the maximum
value of the Hamming codes for 4 symbols, because the
maximum Hamming code of each symbols is '11' (three bits
error).

Step 3: Comparing Process.
The comparator receiving two codes, the first came from the
adder which represents the additive of the Hamming code, and
the second come from the HC_buffer. The value stored in this
buffer is initiated to '1100' and updated throughthe processing.
The updated is executed while the value entered to the
comparator from the adder is less than the value stored in the
buffer. These results perform four processing:

1. Generate an enable signal (EN_In='1') which will be able to
replace the old value store in the HC_buffer
with the new small value came from adder.
2. Store the state number in the ST_buffer which perform the
ADDRESS value of the Viterbi ROM.
3. Store the value of the counter in the output code buffer.
4. Give a clock signal to the counter to generate the next
counters value.

The new value of the counter will allow the ACSU to start
with the next values of the Hamming codes and repeated

D.R LADDHA* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-6, 1603 – 1607

IJESAT | Nov-Dec 2012

Available online @ http://www.ijesat.org 1606

all the above processing. The last processing of ACSU started
at the last counter value '111'.

Step 4: The output process.
The output process is started at the counter value equal to
'111'. At this value all of the above processing steps are
finished and the 16th paths starting from path '0000' and end at
path '1111' were computed. The ST_buffer contains the
ADDRESS ROM of the next state, and the output code
represents the opposite code of the counter that contains the
minimum Hamming code of four encoded symbols. The
output code represents the decoded bits of these symbols.
The enable signal of the ST_buffer and output code come
from the output of AND gate become '1' at the three input bits
'111' the end value of the counter. The enable signal
(EN_Out='1') can to be able to move the ST_buffer and output
code to the execution state of the decoder.

The State Metric Unit (SMU):

The function of this unit is to select the suitable state numbers
for the next state of each code of the counter value.

The state number is selected to represent the ADDRESS ROM
of the Viterbi ROM. From the Viterbi ROM, (EC0 and ST0)
ROM, the selectivity of the suitable state number (ST0 or
ST1), and (EC0 or EC1) will depend on the value of the
counter code. For example the counter code '0101' indicate
that the beginning state is ST0, which is the ADDRESS value
of the next state. The next state is ST1, which is used as an
ADDRESS for the next state. The next state ST0 is used as
anADDRESS to the next. The last step ST1 represents the
ADRESS for the next step. For each step, the process is
selected the EC0 or EC1, and ST0 or ST1 at the ADDRESS
location. The EC0 or EC1 at each step are moved to the BMU
to find the Hamming code, while only the state number ST0 or
ST1 of the last step will be selected and moved to the ACSU.

Because of the reduction in the computation by used only the
even paths, therefore only the ST0 will be moved tothe ACSU
while the last expected code of each the last steps EC0 only.
The same counter that used in the ACSU is used in this unit to
select the state number and the expected code of the all steps
in all 16th probability of paths.

The algorithm and operation of the SMU unit can be splits in
to two process steps, starting from receiving the ST value from
ACSU which represents the ADDRESS Viterbi ROM, and
ending to move the suitable expected codes of four symbols to
the BMU.

Step 1: The ST process
Initially, the ST value came from the ACSU. This value is the
same at each code of the counter for the same four symbols
and will be changed after the ending of 16th paths. Another
value of ST is reached from the ST0 ROM. The multiplexer
selects which one is available at a time. At any value of
counter, the ST is still the same but through the execution
steps of each counter code the ST value is arrived from the
ST0 ROM and changed 4 times in each counter code. The
clock signal of the counter is used in multiplexer to select
which value of ST to be selected. The '1' selects the ST from
ACSU, and the '0' selects ST value from ST0 ROM. The
output of multiplexer is shifted one bit each step by shifting
the counter value starting from MSB and ending with '0' to
represent the even path. The new value of the ST will be used
as an ADDRESS to the Viterbi ROM (EC0, and ST0).

Step 2: Expected code process
The expected code is received from EC0 ROM with the
suitable ADDRESS. In this process the expected code read
from the ROM will be transferred to the 3 bits shift register.
The serial bits moved from 3 bits shift register to the 12 bits
shift registers, at the end process of the expected code
computation with four steps. The 12 bits shift register contains
the all expected code of four steps. The first 3 bits represent
the expected code for the first step, the second 3 bits is the
expected code for the second steps, and so on. The 12 bits (4
code of expected code for the ith path of
16th paths) are moved to the BMU to be compared with the
suitable codes.

FPGA IMPLEMENTATION SYSTEM

This part presents the results of the FPGA implementation of
the proposed model of Viterbi decoder. The proposed
architecture is implemented on a SPARTAN 3 Field
Programmable Gate Array (FPGA). The FPGA
implementation is performed using version 6.3i of the Xilinx
implementation tools which is called (ISE 6.3i). The design
architecture is described with Very High speed integrated
circuit hardware Description Language (VHDL) using
ModelSim (XE II v5.8c).

CONCLUSION

In this paper, a adaptive Viterbi algorithm based on the
strongly connected trellis decoding of binary convolutional
codes has been presented. The use of error-correcting codes
has proven to be an effective way to overcome data corruption
in digital communication channels. The adaptive Viterbi
decoders are modeled using VHDL, and post synthesized by
Xilinx Design Manager FPGA logic. The design simulations
have been done based on both the VHDL codes at modelsim

D.R LADDHA* et al. ISSN: 2250–3676

[IJESAT] INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE & ADVANCED TECHNOLOGY Volume-2, Issue-6, 1603 – 1607

IJESAT | Nov-Dec 2012

Available online @ http://www.ijesat.org 1607

and the VHDL codes generated by Xilinx design manager
after post synthesis.

REFERENCES
1.Yun-Ching Tang, Do-Chen Hu, Weiyi Wei, Wen-Chung
Lin, Hongchin Lin, “A Memory-Efficient Architecture for
Low Latency Viterbi Decoders.” International Symposium on
VLSI design,(IEEE July 2009)
2.Matthias Kamuf, Viktor Owall, John B. Anderson, “Survior
Path Processing in Viterbi Decoders Using Register Exchange
and Traceforward.”(IEEE Jun 2007)
3.Hema S, Sureshbabu V,Ramesh P, “FPGA Implementation
of Vitrbi Decoder”, Proceedings of the 6th WSEAS Int. Conf.
on Electronics,Hardware,Wireless and Optical
Communications, Corfu Island, Greece, February 16-19, 2007.
4.S.W. Shaker, S.H. Alramely and K. A. Shehata, “Design and
Implementation of Low –Power Viterbi Decoder for Software
–Defined WiMAX Receiver”, 17th Telecommunication Forum
TELFOR, Serbia, Belgrade, 2009.
5.J.S, Reeve., and K. Amarasinghe, ”A Parallel Viterbi
Decoder for block Cyclic and Convolutional Codes”, Journal
of Signal Processing Jan 2005.
6.S. Swaminathan, R. Tressier, D. Goeckel., and W. Burleson,
“A dynamically reconfigurable adaptive Viterbi decoder”,
IEEE Transaction on Very Large Scale Integration (VLSI)
Systems,Vpl. 13,April 2005.

