ABSTRACT
Nowadays, as per the recent studies, the development of integration technology, System on-Chip (SoC), has a large number of transistors. NoC has been proposed as a highly structured and scalable solution to address communication problems in SoC. As the microprocessor industry is moving from single-core to multicore architectures, which require efficient communications processors. Also both SoC and microprocessor are used for a high-performance, flexible, scalable, and design-friendly interconnection. Interconnection architectures are usually based on dedicated wires or shared buses. NoC has been proposed as a highly structured and scalable solution to address communication problems in SoC. On-chip interconnection network provides advantages over dedicated wiring and buses, i.e., high-bandwidth, low-latency, low-power consumption, and scalability. Among these topologies, mesh topology has gained more consideration by designers due to its simplicity. In this paper, we compare source routing algorithm and junction-based routing algorithm using 2D mesh topology of NoC architecture in terms of different performance metrics such as, latency, power consumption, and power/throughput ratio.

Keywords: NoC, 2D mesh topology, Routing algorithms, Junction based routing, VBR traffic, simulator etc.

1. INTRODUCTION
At the earlier development of integration technology, System on-Chip (SoC), composed of heterogeneous cores on a single chip, has a large number of transistors. As the microprocessor industry is moving from single-core to multicore architectures, which require efficient communications processors. Also both SoC and microprocessor are used for a high-performance, flexible, scalable, and design-friendly interconnection. Interconnection architectures are usually based on dedicated wires or shared buses. Dedicated wires provide point-to-point connection between every pair of nodes, effective for small systems of a few cores. But as the number of cores increases, the number of wires in the point-to-point architecture making it unable to scale. A shared bus which is a set of wires shared by multiple cores, is more scalable and reusable. The disadvantages of shared bus architectures include long data delay, high energy consumption, increasing complexity in decoding/arbitration, low bandwidth. NoC has been proposed as a highly structured and scalable solution to address communication problems in SoC. On-chip interconnection network provides advantages over dedicated wiring and buses, i.e., high-bandwidth, low-latency, low-power consumption, and scalability. NoC designs many types of topology such as Mesh, Torus, Star, Octagon, and SPIN. Design of NoC router architecture depends upon the network topology. The mesh topology is the most common network topologies. The main features of NoC platforms are routing algorithm and topology. The NoC parameters are used to give better performance of the system as compared to SoC. For evaluating NoC using a simulator, data is transmitted into the network in different ways and performance values are evaluated regarding the traffic. Number of messages is transported back and forth via the interconnection networks. Thus, the interconnections among multiple cores on a chip have a significant impact on communication and performance of the chip design in terms of end-to-end delay, throughput, and packets loss ratio. Therefore, it is worthwhile studying the different characteristics of different topologies. Source routing has an important disadvantage of overhead for storing the path Information in header of each packet sent. This disadvantage becomes worse as the size of the network grows. The Junction Based Routing (JBR) can be used to remove this disadvantage. The idea of junction based routing is basically derived from the railway networks. Railway networks generally have a few large stations, called junctions which are
connected by fast railways. A long distance journeys from a small town to another small town is achieved by first going to the nearest junction close to the source and from there reaching a junction close to the destination.

The VBR service category is used for connections that transport traffic at variable rates traffic that relies on accurate timing between the traffic source and destination. An example of traffic that requires this type of service category are variable rate, compressed video streams. Sources that use VBR connections are expected to transmit at a rate that varies with time (for example, traffic that can be considered bursty). VBR connections can be characterized by a Peak Cell Rate (PCR), Sustained Cell Rate (SCR), and Maximum Burst Size (MBS).

2. LITERATURE SURVEY

Sumant Katiyal, Jayesh kumar Dalal, Parag Parandkar proposed that Network on chip is a scalable and flexible communication architecture for the design of core based System-on-Chip. Communication performance of a NOC heavily depends on routing algorithm. XY routing algorithm is distributed deterministic routing algorithm. Odd-Even (OE) routing algorithm is distributed adaptive routing algorithm with deadlock-free ability. DyAD combines the advantages of both deterministic and adaptive routing schemes. Key metrics which determines best performance for routing algorithms for Network-on-Chip architectures are Minimum Latency, Minimum Power and Maximum Throughput. We demonstrated the impact of traffic load (bandwidth) variations on average latency and total network power for three routing algorithms XY, OE and DyAD on a 3x3 2-dimensional mesh topology. The simulation is performed on nirgam NoC simulator version 2.1 for constant bit rate traffic condition. The simulation results reveals the dominance of DyAD over XY and OE algorithms depicting the minimum values of overall average latency per channel (in clock cycles per flit) as 1.58871, overall average latency per channel (in clock cycles per packet) as 9.53226, overall average latency (in clock cycles per flit) as 26.105, and total network power as 0.1771 milliwatts, achieved for DyAD routing algorithm. [13]

Pan Hao, Hong QiLiuJiaqin& Pan Pan,purposed that NOC is to solve the choke point in communication and the clock problem from architecture. Each route in NOC includes some routers, and it takes a few clock periods by passing a router. When the network is in congestion, the package transmission will produce much more time delay. So adopting a appropriate routing algorithm to get the balance between the time delay and throughput rate becomes the key problem. In this paper, we have done some research on XY and OE algorithms based on the 4×4 mesh topology by using NIRGAM emulator. The result shows that the ratio of throughput rate and package time delay is 2.5358 in OE routing algorithm, which is larger than 2.1126 in XY routing algorithm, and it proves that the OE routing algorithm is better to Mesh topology than OE routing algorithm.[12]

Saad Mubeen and Shashi Kumar described very important for exploiting enormous computing power available on a multicore chip. Routing algorithms significantly affect the performance of a NoC. Most of the existing NoC architectural proposals advocate distributed routing algorithms for building NoC platforms. Although source routing offers many advantages, but researchers avoided it due to its apparent disadvantage of larger header size requirement that results in lower bandwidth utilization. From this conclusion they proposed a strong case for the use of source routing for NoCs, especially for platforms with small sizes and regular topologies. first selects the most appropriate deadlock free routing algorithm, from a set of routing algorithms, based on the application’s traffic patterns. Then the selected (possibly adaptive) routing algorithm is used to compute efficient static paths with the goal of link load balancing. The simulation results that 28% lower latency even at medium load, as compared to distributed routing. Also designed a router to support source routing for mesh topology NoC platforms. A Matlab based tool called MatPC has been developed for this purpose. From this, the use of source routing in mesh topology NoC, because of the small and fixed size of practical NoCs, the overhead of source routing is negligible and it is easily compensated by a large number of its advantages, including lower router cost.
and higher communication speed of the router. Evaluation results show that source routing gives higher latency and throughput performance as compared to corresponding distributed routing. [4]

N. Ashokkumar, Nagarajan, S. Ravanaraja proposed that, Network-on-chip is a very active research field with many practical applications in industry. Based on the study, they identified as especially crucial for continued development and success of NoC paradigm as procedures and test cases for benchmarking, traffic characterization and modeling, design automation, latency and power minimization, fault-tolerance, QoS policies, prototyping, and network interface design. They developed efficient communication architectures, in some cases specifically optimized for specific applications. There is a converging trend within the research community towards an agreement that Networks on Chip constitute an enabling solution for this level of integration. Also their proposal has a variable impact in performance while traditional fault-tolerant solution like Hamming Code has a constant impact. Besides their proposal can save among 15% to 100% the energy when compared Hamming Code. [5]

Vaishali V. Ingle, Mahendra A. Gaikwad Proposed that, the 2D mesh network on chip (NoC) is a popular NoC topology because of network scalability and the use of a simple routing algorithm. In this paper, they compare popular mesh with the other NoC topologies in terms of different performance metrics such as, latency, power consumption, and power/throughput ratio under different routing algorithms. A 2D-mesh topology is one of the most frequently mentioned topologies for an NoC design due to its natural layout mapping onto an SoC. Thus, the 2D mesh network on chip (NoC) is a popular NoC topology because of network scalability and the use of a simple routing algorithm. Latency and throughput performance up to 28% lower latency even at medium load, as compared to distributed routing. In this paper, they compare popular mesh with the other NoC topologies in terms of different performance metrics. Thus from their conclusion, it shows torus always has better latency than mesh. However the cost to pay for this improvement is higher power consumption. [2]

3. PROBLEM DEFINITION

In NoC routing algorithm determines how the data is routed from sender to receiver. Source routing has one drawback of overhead for storing the path information in header of every packet. This disadvantage becomes worse as the size of the network grows. So in this paper, we propose a Junction Based Routing (JBR), to remove this limitation. By increasing size of network using JBR algorithm, it helps to store the path information in header of every packets. We will solve two important issues related to JBR, namely, the required number of junctions and their positions and path computation for efficient deadlock-free routing. The Junction Based Routing Algorithm is design from the idea derived from the railway networks. Railway networks generally have a few large stations, called junctions which are connected by fast railways. A long distance journeys from a small town to another small town is achieved by first going to the nearest junction close to the source and from there reaching a junction close to the destination. JBR algorithm is deadlock free routing algorithm. So with the help of JBR algorithm, we will find performance parameter throughput and power and compare with different routing algorithm.

4. PROPOSED WORK

Network topology provides the interconnection of various elements (links, nodes, etc.) of a network. Design of NoC router architecture depends upon the network topology. The mesh topology is one of the most common network topologies to use. Two-dimensional mesh topology will be used throughout in this. It is one of the easiest topologies to implement on a silicon die, because of its flat configuration. A mesh-shaped network consists of m columns and n rows. The routers are situated in the intersections of two wires and the computational resources are near routers. Addresses of routers and resources can be easily defined as x-y coordinates in mesh. Mesh topology is easy to implement as all nodes are in equally distance as shown in Figure:
It is one of the easiest topologies to implement on a silicon die, because of its flat configuration. Mesh size given as RxC means the number of node rows is R and the number of node columns is C. Cube and hypercube are also regular topologies similar to mesh.

Routing Algorithm:

Routing algorithms define the path taken by a packet between source and target switches. They must prevent deadlock, livelock, and starvation \[8\][9] situations. Deadlock may be defined as a cyclic dependency among nodes requiring access to a set of resources, so that no forward progress can be made, no matter what sequence of events happens [6]. Livelock refers to packets circulating the network without ever making any progress towards their destination. Starvation happens when a packet in a buffer requests an output channel, being blocked because the output channel is always allocated to another packet. Routing algorithms can be classified according to the three different criteria: (i) where the routing decisions are taken; (ii) how a path is defined, and (iii) the path length. In source routing, the whole path is decided at the source switch, the header of the packet has to carry all the routing information, increasing the packet size [9].

I. X-Y Routing algorithm

In X-Y routing, if the column of the source and the column of the destination are different, a packet moves along the horizontal axis toward the destination. After that it makes progress to the destination vertically. In Figure, source node (3,1) is communicating with (1,3). The path which is shown using the vector is allowed for sending data from S to D.

II. OE Routing Algorithm

Odd-Even routing algorithm is another partially adaptive routing algorithm and has a higher adaptiveness in compared with the other routing algorithms [3][7]. Packets are not allowed to make an East-North or East-South turn at the nodes that are in an even column of a mesh network. North-West or South-West turn is limited at the nodes that are in an odd column. For instance, source node S is sending data to destination node D. Applying Odd-Even routing algorithm, there are three possible paths for sending data from S to D that are depicted in Figure:
Junction-Based Routing Source routing has an important disadvantage of overhead for storing the path information in header of each packet sent. This disadvantage becomes worse as the size of the network grows. In this chapter we describe a routing technique, called Junction Based Routing (JBR) to remove this disadvantage. The idea of junction based routing is basically derived from the railway networks. Railway networks generally have a few large stations, called junctions which are connected by fast railways. A long distance journeys from a small town to another small town is achieved by first going to the nearest junction close to the source and from there reaching a junction close to the destination. Consider the following 7x7 mesh topology NoC that has the diameter of 13 hops.

The node that is presented using (x,y) is located at xth row and yth column. Distance between nodes that is located at position (x1,y1) and (x2,y2) is calculated using the formula: Distance = |y2-y1| + |x2-x1|. The number of routers used from a source node to a destination node is equal to the number of links used plus one. We define hop count as number of routers on the path from a source to the destination. Hop Count = Distance + 1.

III. VARIABLE BIT RATE
The VBR service category is used for connections that transport traffic at variable rates traffic that relies on accurate timing between the traffic source and destination. An example of traffic that requires this type of service category are variable rate, compressed video streams. Sources that use VBR connections are expected to transmit at a rate that varies with time (for example, traffic that can be considered bursty). VBR connections can be characterized by a Peak Cell Rate (PCR), Sustained Cell Rate (SCR), and Maximum Burst Size (MBS).

IV. PERFORMANCE PARAMETERS
Some of the most important parameters that are used in evaluating the performance of NoCs are defined in this sub-section briefly.

Latency

Network latency presents the required time to transfer n bytes of payload from its source to its destination. Latency consists of routing delay, contention delay, channel occupancy and overhead.

Bandwidth

Communication bandwidth is the amount of data that can be moved using a communication link in a unit time period.

Throughput

Throughput is the total number of received packets by the destinations per time unit.

Packet Loss

Packet loss happens when one or more packets do not reach their destination due to the error introduced by the network, the contention for network link or lack of buffer space etc.

5. **CONCLUSION**

In this research we design the 2D 7x7 mesh topology under the VBR traffic using Junction Based Routing algorithm. Junction Based Routing algorithm gives path information for only a few hops is stored in the packet header. With this information, the packet reaches the destination, or reaches a junction from where the path information for on-ward path is picked up. Also by using this algorithm latency does not increase so much using junctions. Throughput also does not level off significantly. Header flit in JBR can carry payload data and this improves the performance of JBR in terms of throughput and latency compared to source routing which needs to store large path information.

6. **ACKNOWLEDGEMENTS**

I would like to thank my guide Dr. Keswani Sir and Prof. Nilesh Bodane Sir, and for their guidance and support and Department of Electronics Engineering (Comm.), Vidharbh Institute of Technology Engineering, Nagpur

7. **REFERENCES**

[3] Yuho Jin, Member, IEEE Computer Society, Eun Jung Kim, Member, IEEE Computer Society, and Timothy Mark Pinkston, Fellow,IEEE Computer Society

[7] “Power and Area Efficient Design of Network-on-Chip Router Through Utilization of Idle Buffers” Khalid Latif, Tiberiu Seceleanu, Hannu Tenhunen, Department of Information Technology, University of Turku, Finland.IEEE,2010

Minghua Tang, Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conference.

Pan Hao, Hong QiI, Du Jiaqin, Pan “Comparison of 2D MESH Routing Algorithm in NOC” IEEE 2011 computer society.